
 

Page 1 

D6.5 REEEM Pathways Database 

Technical Documentation  

  

   

 

  

 

  

 

 

  

  

  

  

  

  

  

  

  

  

Jan. 2019 Version 2.1 



 

Page 2 

Project Partners  

 
 

Project Information  

Project Number:  691739 

Project Acronym:  REEEM 

Project title:  Role of technologies in an energy efficient economy –  

model based analysis policy measures and  

transformation pathways to a sustainable energy system 

Authors  

Ludwig Hülk (RLI), Alexis Michaltsis (RLI), Ólavur Ellefsen (TOKNI), Mascha Richter (RLI) 

History of changes  

Version Publication date Change 

0.1 11.01.2019 Initial version 

0.2 18.01.2019 Reviewer version 

1.0 25.01.2019 Beta version 

2.0 28.01.2019 Release version 

2.1 31.01.2019 Final version 

  



 

Page 3 

Table of contents 

Project summary ................................................................................................................................................. 3 

About this report  ................................................................................................................................................ 4 

1. Database Setup ............................................................................................................................................. 5 

2. Database Adapters ..................................................................................................................................... 12 

3. Data Classification ...................................................................................................................................... 15 

4. Database Usage .......................................................................................................................................... 18 

5. Links ............................................................................................................................................................ 21 

 

Project summary 

REEEM aims to gain a clear and comprehensive understanding of the system-wide 

implications of energy strategies in support of transitions to a competitive low-carbon  

EU energy society. This project is developed to address four main objectives:  

(1) to develop an integrated assessment framework  

(2) to define pathways towards a low-carbon society and assess their potential 

implications  

(3) to bridge the science-policy gap through a clear communication using decision support 

tools  

(4) to ensure transparency in the process  

 

 

The REEEM project has received funding from the European Union’s 

Horizon 2020 research and innovation programme under grant agreement 

No 691739. This publication reflects only the views of its authors, and the 

European Commission cannot be held responsible for its content.  

 

  



 

Page 4 

About this report  

Project manual: 

A flexible open-source and SQL-based Pathways Database will be set-up to 

service all models. It will be accessible through an interface on the project Web 

Platform. Existing databases within the Consortium will initially serve to populate 

the database, enabling open access as far as possible. Data gaps will be 

identified and filled to refine the models. The database will be updated to include 

additional technologies, demand categories, emission factors, etc. Additional 

data will be accessed through a range of public and private sources as well as 

drawing on data gathered for the case studies. Transparent data processing 

scripts and stand-alone tools will be developed to facilitate the communication 

between the various models used in REEEM, and to process basic to higher 

level datasets. 

 

 

Main challenges and tasks 

In this project, a large group of modelling teams from different institutes are developing and 

using different software with different programming languages and modelling paradigms. This 

results in a large variety of data structures. 

Thus, the project database has to meet different requirements. Besides complying with basic 

data security and access regulations as described in the Data Management Plan (D8.2), the 

structure must be flexible and database usage should be as automated as possible. In an 

integrated assessment model, data from different fields are used and created. This leads to 

challenges in the data classification and categorisation which were solved developing and 

implementing a flexible tagging system. Besides the technical aspects, the legal aspects were 

considered as well. The project aims at publishing the data sets under open licenses. 

 

  

http://www.reeem.org/wp-content/uploads/2018/12/6.6-REEEM-Data-Management-Plan-DMP.pdf


 

Page 5 

1. Database Setup 

The database setup contains all scripts to create the REEEM database structure. The 

database setup is scripted using the database programming language Structured Query 

Language (SQL). It is highly oriented on the OpenEnergyPlatform (OEP) structure in order to 

assure compatibility between these databases.  

 

 

Figure 1 REEEM data management and dissemination © Reiner Lemoine Institut | CC BY 4.0 

 

All database related code is under version control and publicly available under open licenses 

on GitHub. The repository is available on https://github.com/ReeemProject/reeem_db. To 

assure data security during the project, the REEEM database is not a public database; it's an 

internal project database. Using the code, one can create the entire setup of the internal 

database on another server or a local computer. The data itself is not part of the repository. 

 

The database setup comprises the following topics, which are explained in detail in the next 

sections: 

 Repository structure 

 Schema Setup 

 User Management 

 Scenario Log 

 Examples and Templates  

https://openenergy-platform.org/
https://reiner-lemoine-institut.de/
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/ReeemProject/reeem_db


 

Page 6 

Repository structure 

The REEEM GitHub repository structure is described in following diagram. The project team 

created a GitHub project named ReeemProject. At the moment, the project has two separate 

repositories (reeem_db and reeem_game). It is possible to add more repositories, if 

necessary. The database repository is structured with different folders for the setup 

(database_setup), the data upload (database_adapter) and data processing and access 

(database_views).  

 

All database operations are coded (in SQL and Python) to have a transparent and 

reproducible database setup. All scripts are licensed with an open license (AGPL-3.0) and 

can be reused and developed further. The database content (the data itself) is not included. 

The folder Model_Data is not part of the repository. 

 

 

Figure 2 REEEM GitHub repository folder structure © Reiner Lemoine Institut | CC BY 4.0 

  

https://reiner-lemoine-institut.de/
https://creativecommons.org/licenses/by/4.0/legalcode


 

Page 7 

 

Schema Setup 

The PostgreSQL schema structure is based on the ISO 19115 MD_TopicCategoryCode 

(Section B.5.27) which is also used in the OEDB schema structure (v0.2). The ISO list has 

been complemented with energy specific topics(e.g., energy_demand) and project related 

schemas (e.g., game, pathway). In addition to these schemas, there are schemas  which are 

software specific and are used for data visualisation (e.g., hdb_catalog, hdb_views).  

 

Table 1 REEEM database schema descriptions 

Schema name Description 

boundaries legal land descriptions. examples: political and administrative boundaries 

climate 
processes and phenomena of the atmosphere. examples: cloud cover, 
weather, climate, atmospheric conditions, climate change, precipitation 

economy 
economic activities, conditions and employment. examples: production, labour, 
revenue, commerce, industry, tourism and ecotourism, forestry, fisheries, 
exploration and exploitation of resources such as minerals, oil and gas 

energy_demand consumption and use of energy. examples: peak loads, load curves 

energy_grid energy transmission infrastructure. examples: power lines, substation, pipelines 

energy_supply conversion (generation) of energy. examples: power stations, renewables 

environment 
environmental resources, protection and conservation. examples: 
environmental pollution, waste storage and treatment, environmental impact 
assessment, monitoring environmental risk, nature reserves, landscape 

society 
characteristics of society and cultures. examples: settlements, anthropology, 
archaeology, education, demographic data, recreational areas and activities, 
social impact assessments, crime and justice, census information 

model_draft modelling sandbox, temporary tables. examples: modelling raw data 

reference sources, literature 

game REEEMgame - Online Energy Systems Learning Simulation (D7.4) 

pathway REEEMpathways - Pathways Diagnostic Tool (D7.2) 

 

Code: reeem_setup_schema.sql  

https://www.postgresql.org/docs/current/static/ddl-schemas.html
https://www.geoportal.de/SharedDocs/Downloads/DE/GDI-DE/Deutsche_Uebersetzung_der_ISO-Felder.pdf?__blob=publicationFile
https://wiki.openmod-initiative.org/wiki/Database_schema#v0.2_.28current_version.29
https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/reeem_setup_schema.sql


 

Page 8 

User Management 

The current concept of the user rights for the server is based on three main groups (admin, 

user, read) with additional groups for special schemas (like game). Roles (login & pw) are 

assigned to groups with defined privileges. Objects (tables, materialized views, views, 

sequences) are granted to groups. Usually this is done by default, but can be done manually. 

 

“PostgreSQL manages database access permissions using the concept of roles. A role can 

be thought of as either a database user, or a group of database users, depending on how the 

role is set up. Roles can own database objects (for example, tables) and can assign privileges 

on those objects to other roles to control who has access to which objects. Furthermore, it is 

possible to grant membership in a role to another role, thus allowing the member role to use 

privileges assigned to another role.” source 

Groups 

REEEM users can have the following groups: 

Table 2 Database user groups and access rights 

Group Rights 

reeem_admin Read, write and user management 

reeem_user Read and write 

reeem_read Read only 

Reeem_game Read all and write to own schema 

 

  

https://www.postgresql.org/docs/9.0/static/user-manag.html


 

Page 9 

REEEM user management 

The project database has a multi-level user management with admins who take care of user 

rights, users who have unlimited access to the database content, and visitors with read 

access to selected parts. All user accounts are password protected. The permission rights of 

each data set are also stored in the metadata. 

The REEEM user management is described in the following use case diagram: 

 

Figure 3 REEEM user management © Reiner Lemoine Institut | CC BY 4.0 

Code: reeem_setup_user_managment.sql 

Metadata 

In the project database, the metadata is stored as a JSON string in a comment of each table. 

By creating a metadata string (following the FAIR Principles), additional information about 

each model is directly stored with the data. 

 General description (e.g., title, description, spatial and temporal resolution) 

 License information (e.g., sources, contributors, resulting (open) license) 

 Data description (e.g., column name, column description, unit) 

 

An example metadata string can be found here: reeem_test_table.sql 

  

https://reiner-lemoine-institut.de/
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/reeem_setup_user_managment.sql
https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/reeem_test_table.sql#L56-L107


 

Page 10 

Scenario Log 

The Scenario Log is a function to add an entry to the scenario log table 

(model_draft.scenario_log). It has been implemented for SQL and Python. It covers and 

documents the creation of the database structure (tables) and the import and export of data. 

All database scripts are using the scenario log function to ensure transparency. 

Table 3 Scenario Log parameters 

Inputs Example Outputs (to table) 

 project 

 version ° 

 io ° 

 schema_name 

 table_name 

 script_name ° 

 comment 

REEEM 

V0.3 

Input (output/setup) 

model_draft 

reeem_times_paneu_output 

reeem_db_setup_times_paneu.sql 

Upload result data 

 All Inputs 

 id (*) 

 entries (*) 

 user_name (*) 

 timestamp (*) 

 metadata (*) 
 

(°) Generated in Python   (*) Generated from database system 

Execution 

In SQL-scripts: 

-- scenario log (project,version,io,schema_name, 

-- table_name,script_name,comment) 

scenario_log('REEEM','v0.1.0','setup','model_draft', 

'scenario_log','reeem_scenario_log.sql','Function test'); 

In Python-scripts: 

# scenario log (con,project,version,io,schema_name, 

# table_name,script_name,comment) 

scenario_log(con, 'REEEM', fns['version'], fns['io'], db_schema, 

db_table, os.path.basename(__file__), filename) 

Code: Scenario Log table setup, Scenario Log function 

 

The Scenario Log is used for different database operations: 

 Create a table 

 Insert data into table 

 Update or change data 

 Visualize and download data 

 Delete a table/view  

https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/reeem_setup_scenario_log.sql
https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/functions/reeem_scenario_log.sql


 

Page 11 

Examples and Templates 

In order to increase reusability, examples and templates have been added to the repository. 

The programming language is SQL. The examples and templates are used to set up new 

models or users and test and document new developments. 

Examples  

Code: model_draft.test_table 

Includes: 

 test table 

 access rights 

 metadata description 

 metadata validation 

 insert test data 

 select test data 

Templates 

Code: model_draft.model_data_template 

Includes: 

 table description 

 access rights 

 metadata 

 scenario log 

 

 

  

https://github.com/ReeemProject/reeem_db/blob/master/database_setup/utilities/reeem_test_table.sql
https://github.com/ReeemProject/reeem_db/blob/master/database_setup/reeem_model_data_template.sql


 

Page 12 

2. Database Adapters 

Database adapters are a bundle of (Python) scripts. Each script reads in data from a local file 

and writes the data to a database table. Every script corresponds to one specific model. 

Each REEEM modelling team has a customized data adapter. The adapter does not affect 

the data itself but is used as an importer or exporter between the (online) database and a 

(local) file. 

 

 

Figure 4 REEEM database connections © Reiner Lemoine Institut | CC BY 4.0 

 

reeem.io script 

The reeem.io script is needed for each adapter. It contains a method to establish a database 

connection to the REEEM PostgreSQL database. In addition it contains a python 

logging function and the described scenario log function. 

 

 

https://reiner-lemoine-institut.de/
https://creativecommons.org/licenses/by/4.0/legalcode
https://github.com/ReeemProject/reeem_db/blob/master/database_adapter/reeem_io.py


 

Page 13 

Data 

File names 

In order to process the local data files automatically a naming convention for the data files 

was established. 

 

[Date]_[PATHWAY]_[MODEL]_[FRAMEWORK]_[VERSION]_[I/O] 

Example: 2018-01-16_BASE_TimesPanEU_FrameworkV2_DataV1_Input.xslx 

[Date] YYYY-MM-DD. (ISO 8601) Use the hyphen (-) to separate years, months and days. 

[PATHWAY] Name of the pathway. 

[MODEL] Name of the model or software. 

[FRAMEWORK] FrameworkVn. It refers to the composition of connected models. 

[VERSION] DataVn. Model run number. 

[I/O] Input or output data of the model.  



 

Page 14 

Data structure 

Each table should have a similar data structure with the same columns and datatypes. In 

addition, some model data has additional columns (e.g., internal id). The data types are 

specific for PostgreSQL. 

 

Table 4 REEEM table structure and columns 

ID Parameter 
name 

Description Data type 

1 id* Unique table id  serial 

2 nid A unique id per sheet or file  integer 

3 pathway* REEEM pathway (from filename)  text 

4 framework* REEEM framework (from filename)  text 

5 version*  Data version (from filename)  text 

6 schema*2 Categorisation: Schema (e.g., supply, economy)  text 

7 field*2 Categorisation: Field (e.g., Power, Heat, Mobility)  text 

8 category*2 Categorisation: Category (e.g., Technology)  text 

9 region Country code (iso_2)  text 

10 year Year (format: YYYY)  integer 

11 indicator Parameter name  text 

12 value Parameter value  double precision 

13 unit Parameter unit (abbreviation)  text 

14 aggregation Single or sum (for a category)  boolean 

15 tag Data categorisation  hstore 

16 updated Timestamp from (now())  timestamp 

17 source Where does the value come from  text 

 

* These columns are added automatically (from the filename or system). 

*2 Additional columns for data categorisation. 

  

https://www.postgresql.org/docs/current/datatype.html


 

Page 15 

3. Data Classification 

After the input and output model data is inserted into the database through the help of the 

database adapters, the next step is to describe the data by tagging each database row of 

every given model input and output data. The tagging process manifests in SQL data cleaning 

and tagging scripts. Each script corresponds to one model. While most models and databases 

have a hierarchic data classification system (schema, field, category), the REEEM project 

decided for a more flexible tagging system in addition. The reason for the tagging is to enable 

clustering of data across model borders and labelling of ambiguous terms. 

 

Code: data-cleaning-and-tagging 

 

Each model table has a column named tags. The fields of this column are of the PostgreSQL 

database data type named hstore. This data type can save key value pairs in a key value 

store (also often named associated array, dictionary or hashmap). 

Data Structure 

Description of the data structure of the hstore data type: 

{“key1”: “value1”, “key2” : “value2”, ... “keyn” : “valuen” } 

Keys 

Each key can have one of the following names: 

 model 

 schema 

 field 

 category 

 (custom) 

One special case are custom keys, which can have multiple custom names, as long as they 

are not conflicting with the 4 other fixed key names. 

  

https://github.com/ReeemProject/reeem_db/tree/master/database_setup/data-cleaning


 

Page 16 

Values 

The values of the key value pairs are taken by tagging each data row in the database with 

model, schema, field, category and optional custom key values. This is done by grouping data 

rows and looking up the information given in their field, category and indicator columns, which 

have been provided by all research partners. 

Model 

The names of the used models in the REEEM project are the possible values of the model tag 

keys. All model names in the tags are written in lower case and white spaces are replaced by 

underscores. 

Model tag example “TIMES PanEU”: 

model: times_paneu 

Schema 

The values of the schema key map to the 8 schema names described in the database 

schema setup section of this report. Some schemas are not considered, because no data was 

used from this area. 

 

 boundaries 

 climate 

 economy 

 energy_demand 

 energy_grid 

 energy_supply 

 environment 

 society 

Field 

Field values can be best described as sub schemas. 

Field tag example: 

schema: society 

field: health 

 



 

Page 17 

Category 

Category values are values which are not an indicator but further deepen the definition of a 

data row. 

Category tag example: 

schema: society 

field: health 

category: pollution 

Custom 

Custom keys can have custom values and are used if further deepening of the key structure is 

desired. 

Custom tag example: 

field: costs 

costs: investment  (custom key data rown) 

costs: variable  (custom key data rowm) 

Multiple values 

If needed, each key (except the model key) can have multiple values. In comparison to a 

strictly hierarchical categorisation system, this system is more flexible and allows tagging 

ambiguous terms. For this, each value is separated by a semicolon: 

{“key”: “value1;value2;valuen” } 

 

  



 

Page 18 

4. Database Usage 

Database Views 

Database views with Jupyter Notebooks 

For pre-filtering and gaining inside information of the input and output data of the different 

models, frameworks and data versions used in the REEEM project the computational open-

source environment named Jupyter Notebooks is being used. In order to access the data, the 

database can be selected and filtered using views. These views are written in SQL and are 

executed in the database. As additional service, the RLI has gathered visualisation scripts in 

Jupyter Notebooks. 

 

Code: REEEM Jupyter Notebooks visualisation scripts 

 

To run them on your computer you have to create a suitable environment. We recommend 

using Conda (which you have to install). 

 

Link: Conda, package and environment management system  

 

There are additional requirements to run the notebooks. Therefore you have to execute the 

following commands (only once - when you run them again you start with the "activate" 

command): 

Create Conda environment 

open a cmd.exe terminal 

cd ...\reeem_db\database_views\reeem_jupyter\ 

conda env create -f requirement_reeem-vis.yml 

conda info --envs  

 

Run Jupyter Notebooks 

open a cmd.exe terminal 

cd ...\reeem_db\database_views\reeem_jupyter\ 

conda activate reeem-vis 

jupyter notebook (to execute the code in the notepads you have to push enter+shift) 

https://github.com/ReeemProject/reeem_db/tree/master/database_views/reeem_jupyter
https://conda.io/docs/


 

Page 19 

Database Access 

Corresponding to the REEEM Data Management Plan (DMP) the database (PostgreSQL) is 

hosted on a server located at the facility of the DTU project partner in Denmark. 

 

To access the REEEM database, a suitable database management system (DBMS) and a 

valid user is required. For further details on the user management, please refer to the “User 

management” section in this document. 

 

For security measures and because of licensing issues the REEEM project database access 

is publicly restricted to the project partners. In order to gain access to the entire project 

database, please contact Ludwig Hülk (RLI): 

 

 
 

As stated in the DMP, all openly licensed input and output data of the models and pathways 

(of the REEEMPathways tool) in the REEEM database are being publicly published on the 

OpenEnergyPlatform (OEP) until the end of the project and can then be identified under the 

tag “REEEM”. Furthermore, in the REEEM project the Open Source energy Modelling Base 

for the European Union (OSeMBE) is developed openly as well. The coupled open source 

engagement model and input data of OSeMBE is available on REEEM.org and the output 

model data will be available on OEP. Finally, all open support documentation from the 

different data processing and modeling activities are either available on GitHub or in the 

concerning open access publications. 

 

For remote access to the REEEM PostgreSQL database system at DTU, we suggest using 

the browser based software pgAdmin4. For users not familiar with PostgreSQL, we further 

suggest the online documentation and available tutorials on PostgreSQL. 

  

http://www.reeem.org/wp-content/uploads/2018/12/6.6-REEEM-Data-Management-Plan-DMP.pdf
https://pathways.reeem.org/
https://openenergy-platform.org/
http://www.reeem.org/index.php/osemosys/
http://www.reeem.org/index.php/sample-page/
https://www.pgadmin.org/download/
https://www.postgresql.org/docs/current/index.html
http://www.postgresqltutorial.com/


 

Page 20 

Tutorial: Database access with pgAdmin4 

1. Get your personal access information from contact via email. 

2. Install pgAdmin4 

3. Create a connection to the DTU-server: 

  [Browser] Servers -> right click -> Create -> Server 

 General 

 Name = DTU-Server (your choice / any name for the server) 

 Connection 

 Host =  will be provided by email 

 Port =  will be provided by email 

 Username = will be provided by email 

 Password = will be provided by email 

 Save connection and login 

 [In your browser] Servers -> right click -> Refresh 

 

Tutorial: Explore database structure 

1. [Browser] Databases ->  reeem -> Schemas 

– Schemas are like folders, they structure and categorises the data 

– Schemas contain subfolders with the tables and (materialized) views 

  



 

Page 21 

Tutorial: View the data of a table or (materialized) view 

1. Open Table Data: 

[Browser] (right click) on a table or view) -> View Data (you have following options): 

– All Rows 

– First 100 Rows 

– Last 100 Rows 

– Filtered Rows... 

– If you open a table with > 10.000 rows it may take a while 

– A Query-1 opens in the [Query-bar] 

– It shows the Select-Code in SQL and the data 

 

 

Figure 5 REEEM scenario log table 

5. Links 

Public GitHub repository 

https://github.com/ReeemProject/reeem_db/ 

https://github.com/ReeemProject/reeem_db/

